数字引领时代  智能开创未来

报告题目:Estimation for ultra high dimensional factor model: a pivotal variable detection-based approach

报告题目:Estimation for ultra high dimensional factor model: a pivotal variable detection-based approach

时间地点:2017年4月18日(星期二)下午1:00,博识楼434会议室

报告人:朱力行教授,香港浸会大学

摘要:To estimate the high dimensional covariance matrix, row sparsity is often assumed such that each row has a small number of nonzero elements. However, in some applications, such as factor modelling, there may be many nonzero loadings of  the common factors. The corresponding variables are also correlated to one another and the rows are nonsparse or dense. This paper has three main aims. First, a detection method is proposed to identify the rows that may be nonsparse, or at least dense with many nonzero elements. These rows are called  dense rows and the corresponding variables are called  pivotal variables. Second, to determine the number of rows, a ridge ratio method is suggested, which can be regarded as a sure screening procedure. Third, to handle the estimation of high-dimensional factor models, a two-step procedure is suggested with the above screening as the first step. Simulations are conducted to examine the performance of the new method and a real dataset is analyzed for illustration.

报告人简介:朱力行教授,1990年中国科学院系统科学研究所获博士学位,1991年起在中国科学院应用数学研究所工作,1998年至2005年在香港大学统计与精算系工作7年,2005年转任香港浸会大学教授/讲座教授,曾担任两届系主任。

  在国内,他于1997年获得国家杰出青年科学基金资助,是国内统计学界获得此项资助的第一人。1999年入选中科院百人计划支持。2004 年获选为长江讲座教授(社会科学第一批)。2013年获得中国国家自然科学二等奖(独立获奖人)。

  在国际上,他于2000年获得的德国洪堡基金会授予的洪堡研究奖(Humboldt Research Award,独立获奖人),是在自然科学领域中国(包括香港,台湾,澳门)第一位获奖者、也是迄今为止亚洲统计学界唯一的获奖者。此外,他是美国科学促进会会士(AAAS),美国统计学会会士(ASA),美国数理统计研究院会士(IMS)和国际统计研究院当选会员(ISI)。

Baidu
sogou